
Packaging Swift for Ubuntu and more

Matias Piipari
https://fosstodon.org/@mz2
Director of Engineering

https://fosstodon.org/@mz2

Brief history of Canonical’s Linux packaging story

main
universe

main
universe

Personal
Package
Archives (PPAs)

main
universe
PPAs

Snap Store
(snapcraft.io)

Ubuntu Core

We recently helped package .NET for Jammy
https://devblogs.microsoft.com/dotnet/dotnet-6-is-now-in-ubuntu-2204/

https://devblogs.microsoft.com/dotnet/dotnet-6-is-now-in-ubuntu-2204/

Chiselled Ubuntu container = almost Alpine tiny
https://devblogs.microsoft.com/dotnet/dotnet-6-is-now-in-ubuntu-2204/

https://devblogs.microsoft.com/dotnet/dotnet-6-is-now-in-ubuntu-2204/

Swift.org distributes a tarball (😢) for Ubuntu.

Swift.org distributed Swift on Ubuntu is great… as long as you are after a Docker image.
If you rely on the tarball though:

● Friction: fetch dependencies & untarball, set up $PATH.
● No upgrade path, bug / security fixes, livepatch from Canonical.
● Setting up path dependent tools can get awkward.

Practical implication of the friction: developer experience is not attractive.
(compare to, say, Rust, Golang).

● Docker great for deploying cloud native, but not ideal for all kinds of local tools.
● Packaging with SPM / mint or homebrew similarly a high friction route.

Current status of Swift on Ubuntu

Swiftlang.xyz by @futurejones

github.com/apple/swift-installer-scripts

github.com/apple/swift-installer-scripts

��
Count me in!

Swift in universe would be Ubuntu Pro supported
(no need to get it to main)

Packaging your app to N distro specific formats is no-one’s idea of fun
(which is why dev and distro packager traditionally have been different people):

● kernel, glibc, other key shared library dependency versions and fs paths.
● bad packages (or failed installs of good packages) can break a user system.

Your attention is naturally divided based on addressable audience.

Snap and Flatpak formats both tackle these problems (different tech, scope).

● Flatpak: desktop applications.
● Snap:

○ desktop, CLI utilities, servers (whole distributed systems), embedded applications.
○ systemd units (e.g. network-manager, snapd itself).
○ whole system configuration (“gadget snaps”), kernel updates (“kernel snaps”).

Packaging Swift based software in debs still not the way to go for many
even if swiftlang were in universe.

Ubuntu Debs can be staged inside universal Snaps

swiftlang (deb) your app (snap)
‘stage’ inside

40+
distributions

Status of my Swift packaging experiments

apt add-repository ppa:mz2/swiftlang
apt update
apt install swiftlang

Status of my Swift packaging experiments

snap install ./swiftlang.snap

swiftlang
(binary deb) swiftlang (snap) 40+

distributions
swiftlang
(“source” deb)

Swift.org
binary tarball

mz2:swiftlang
PPA

Status of my Swift packaging experiments

swiftlang (deb)

swiftlang (snap)
swiftlint (snap)

swiftformat (snap)

xcbeautify (snap)

vapor toolbox
(snap)

snapcraft
based build

… with 40+
distributions
in mind!

What should be happening instead

snap install ./swiftlang.snap

swiftlang
binary deb(s)

(launchpad)

swiftlang (snap) 40+
distributions

swiftlang
source deb(s)

Patch Swift source
(GitHub action)

Ubuntu
universe

github.com/apple/swift

Linux is easy to target via Snap Store

● Target anything systemd + snapd enabled
(40+ distributions) across amd64, arm64, arm8f, risc-v, …

● Can be a good way to get discovered (getting featured).

● Can’t brick someone’s system with your software:
immutable, transactional, rollbacks, sandboxed.

● Install metrics per version & geography available.

● Controlled risk grades for updates with “channels”
(stable / beta / …) – automated updates can be stopped.

● Easy to integrate to pre-existing CI/CD pipelines.

● Free remote build environment for all the
micro-architectures (no cross-compiling flags to invent).

Architecture of a Snap

Architecture of a Snap

Manages
updates,

confinement

Your
application(s)

Build and
deploy tool

Distribution
channel

Interfaces ~= “entitlements” in macOS sandbox terms

❯ snap interface audio-record
name:audio-record
summary: allows audio recording via supporting services
plugs:
 - chromium
 - discord
 - firefox
 - mattermost-desktop
 - rocketchat-desktop
 - signal-desktop
 - slack
 - steam
 - telegram-desktop
 - vlc
slots:
 - snapd

snapd

chromium
discord
firefox
…

Interfaces ~= “entitlements” in macOS sandbox terms

● Example interfaces:
○ content interface

■ access to mount locations from providers inside the consumer mount namespace
■ = way to express a dependency between packages that snapd will resolve

○ serial-port interface
■ Allow access to specific device nodes (/dev/ttyS*, /dev/ttyUSB*, /dev/ttyMX*..)
■ Allow access to related char devices (c 4:*, …)

○ process control interface
■ Allow access to /usr/bin/{p}kill
■ Allow nice, setpriority, sched_set* syscalls

Interfaces are an abstraction to snapd managed, Linux kernel provided security systems.
● Interfaces are very granular, regularly added to and adjusted.
● Debugging mechanisms are provided for debugging denials.
● Implementation of individual interfaces are generally compact and readable.

Logical separation: a Snap is an immutable, self-contained, read-only mounted filesystem.

Further isolation mechanisms rely on Linux kernel capabilities:

● Namespaces: processes in a snap see their own view of the system
(user, file, processes, network interface, hostname, …).

● seccomp: system call filters (BPF) for the package’s processes.

● cgroups: limit access to system resources (like devices) that can be consumed (quotas):
CPU, memory, networking, access to various device categories.

● AppArmor: snapd managed Mandatory Access Control profiles
(at /var/lib/snapd/apparmor/profiles) which can be further extended by sys admin.

Confinement (“sandboxing”)

● Snaps can house systemd services, IMO the simplest way I have found to create one.

● Confinement model is very flexible for many classes of applications. Examples:
○ microk8s: a lightweight Kubernetes runnable on public clouds or edge.
○ juju: cloud agnostic deploy and service lifecycle manager for distributed systems.
○ MAAS: data centre management, provisioning system.
○ steam: Steam together with (different degrees of bleeding) edge version of mesa.

● Hooks provided to respond to configuration changes (and install, refresh time).
○ E.g. configuration changes made with snap config get / set

(akin to defaults get / set on macOS).

● Health checks can be created to confirm package is in workable state ->
rolled back to last working snapshot if not.

From CLI tools to a Kubernetes cluster

So let’s make one!

● Reads package metadata, build steps from a snap/snapcraft.yaml

● Build done in an isolated environment, either using an LXD system container or
multipass (qemu).

● Remote building (on Launchpad.net) also available for amd64, arm64, RISC-V, … :
snapcraft remote-build

● To distribute app, snapcraft authenticates you and uploads the package to Snap Store
(Store handles codesigning – no local dev code signing hell to be expected!)

snapcraft: build tool for Snap packages

print("Hello world")

> cat hello-world.swift

> swiftc hello-world

> hello-world
Hello world

> snapcraft init

./
├── hello-world.swift
└── snap
 └── snapcraft.yaml

name: hello-world
base: core22
version: "0.1"
summary: …
description: …

'stable' to release to candidate/stable
channels.
grade: stable

'devmode' during dev,
'strict' when you have it confined right,
'classic' when not confined.
confinement: strict

express a package repository dependency
to mz2/swiftlang PPA.
package-repositories:
 - type: apt
 ppa: mz2/swiftlang

parts:
 hello-world:
 plugin: dump
 source: .
 stage-packages:
 - swiftlang
 override-build: |
 swiftc hello-world.swift
 mkdir -p $SNAPCRAFT_PART_INSTALL/bin
 mv hello-world $SNAPCRAFT_PART_INSTALL/bin/hello-world

apps:
 hello-world:
 command: bin/hello-world

> ldd /snap/hello-world/current/bin/hello-world

ldd /snap/hello-world/current/bin/hello-world
 linux-vdso.so.1 (0x00007ffc09a8c000)
 libswift_StringProcessing.so => not found
 libswift_Concurrency.so => not found
 libswiftCore.so => not found
 libswiftSwiftOnoneSupport.so => not found
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6
(0x00007f4f68a00000)
 /lib64/ld-linux-x86-64.so.2 (0x00007f4f68d48000)

parts:
 hello-world:
 plugin: dump
 source: .
 build-packages:
 - swiftlang
 - chrpath
 stage-packages:
 - swiftlang
 override-build: |
 swiftc hello-world.swift
 patchelf --set-rpath $ORIGIN/../lib/swiftlang/lib/swift/linux ./hello-world
 mkdir -p $SNAPCRAFT_PART_INSTALL/bin
 mv hello-world $SNAPCRAFT_PART_INSTALL/bin/hello-world

apps:
 hello-world:
 command: bin/hello-world

> snapcraft
> sudo snap install hello-world.snap

> hello-world
Hello world

So let’s make another one!

parts:
 swiftformat:
 plugin: dump
 source: https://github.com/nicklockwood/SwiftFormat.git
 source-tag: 0.50.5
 build-packages:
 - patchelf
 stage-packages:
 - swiftlang
 override-build: |
 swift build -c release

 BUILT_BIN=`swift build -c release --show-bin-path`/swiftformat
 patchelf --set-rpath /usr/lib/swiftlang/lib/swift/linux $BUILT_BIN

 mkdir -p $SNAPCRAFT_PART_INSTALL/bin
 install -v $BUILT_BIN $SNAPCRAFT_PART_INSTALL/bin

apps:
 swiftformat:
 command: bin/swiftformat
 plugs:

 - home

SwiftFormat

parts:
 swiftlint:
 plugin: dump
 source: https://github.com/tuist/xcbeautify.git
 source-tag: 0.16.0
 build-packages:
 - swiftlang
 - patchelf
 stage-packages:
 - swiftlang
 override-build: |
 make install
 BUILT_BIN=`swift build $SWIFT_FLAGS --show-bin-path`/xcbeautify
 patchelf --set-rpath '$ORIGIN:$ORIGIN/../usr/lib' $BUILT_BIN
 mkdir -p $SNAPCRAFT_PART_INSTALL/bin
 install -v $BUILT_BIN $SNAPCRAFT_PART_INSTALL/bin

apps:
 xcbeautify:
 command: bin/xcbeautify
 plugs:
 - home

xcbeautify

apps:
 vapor:
 command: bin/vapor
 command-chain:
 - bin/toolbox-launcher
 plugs:
 - home
 - network
 - network-bind

layout:
 /usr/lib/swiftlang:
 symlink: $SNAP/usr/lib/swiftlang
 /etc/gitconfig:
 bind-file: $SNAP_DATA/etc/gitconfig
 /usr/lib/git-core:
 symlink: $SNAP/usr/lib/git-core
 /usr/share/git-core/templates:
 symlink: $SNAP/usr/share/git-core/templates

Vapor Toolbox

Service (systemd unit)

apps:
 your-vapor-app:
 command: bin/your-vapor-app
 daemon: simple # simple | oneshot | forking | notify

 restart-condition: always #on-failure|on-success|…|never
 stop-mode: sigterm # sigterm|sigterm-all|sighup|…|sigint-all
 # 20+ more options

Creating a service
https://snapcraft.io/docs/services-and-daemons

https://snapcraft.io/docs/services-and-daemons

snapcraft is pluggable.
How about a Swift plugin?

parts:
 hello-world:
 plugin: swift
 source: .
 swift-revision: 5.7.1-RELEASE
 swift-product: hello-world

apps:
 hello-world:
 command: bin/hello-world

Snapcraft is pluggable. How about a Swift plugin?

parts:
 hello-world:
 plugin: swift
 source: .
 swift-revision: 5.7.1-RELEASE
 swift-product: swiftlint
 swift-configuration: release
 swift-flags: -Xswiftc -static-stdlib
 Swift-include-path:
 -.
 swift-linker: lld
 swift-link:
 - CFURLSessionInterface
 - CFXMLInterface
 - curl
 - xml2
 stage-packages:
 - libxml2
 - libcurl4
apps:
 swiftlint:
 command: bin/swiftlint

Snapcraft is pluggable. How about a Swift plugin?

● Repackaging Swift.org tarballs = a hack to let me explore the value of doing the rest.
○ I got further, but got stuck being able to remove the hack.
○ … because Swift version, OS version, CPU architecture specific toolchain build errors

plausibly need more maintainer attention.

● Building “real” debs with Ubuntu blessed compiler flags included would be useful:
○ Symbol stripping doesn’t work quite right for Debian build tool chain.
○ A debug symbol package would be lovely to include as well.

○ Microarchitecture version used is occasionally changed, has performance effect.
○ FS paths inside the package are pretty awkward.

● A single package with a 480M kitchen sink inside it is not ideal.
○ Compiler toolchain, headers, runtime libs all in one package.
○ (A snapcraft plugin can deal with this by staging only specific paths.)

● How about some minimal, rootless Ubuntu Docker images, too?

Halp! Can we work together on this?

Thank you. Questions?
Slides over at https://matiaspiipari.dev
https://fosstodon.org/@mz2

(Also, we’re hiring, lots!)

https://matiaspiipari.dev
https://fosstodon.org/@mz2

