Packaging Swift for Ubuntu and more

Matias Piipari

https://fosstodon.org/@mz2 CAN @N ICAL U b U n tu@

Director of Engineering

https://fosstodon.org/@mz2

Brief history of Canonical's Linux packaging story

‘%) Ubuntu

EZETT] code Bugs Blueprints Translations Answers
Personal Package Archives for Ubuntu

Personal Package
an apt repository by Launchpad. You can find out more about PPAs and how to use.
in our help page.

blished i PPA.

Show PPAs matching: | | Search/
[including descriptions of empty PPAS

Latest uploads

@ mesa 23.0~ d8~oibaf-j in jammy in &2 b
2011151 minutes ago

@ mesa 23.0-it2212060600.7244d8~oibaf~k in kinetic in fig Updated Open Graphics Drivers - since.
201111 hour ago

& mozillavpn 2.13.0~nightly20221206-bionic1 in bi
minutes ago

<3 ubuntu

linux for human beings

in 2 Mozilla VPN Nightly Builds 1 hour 10

@ mozillavpn 2.13.0~ni
minutes ago

ot 1 hour 10

8 moxillvpn 2.13.0-nightly20221206-Focal n focal n & Mozlla VPN Nighty Bulds 1 hour 10
minutes ago

) ; main
main main X

universe PPAS

Personal
Package Snap Store

Archives (PPAs) (snapcraft.io)

secure REST API
access
A
—y
I REST | Application 1 Application N
| APl | (snap) (snap)
''''' v »
=t s O SO U s -
Ve - - - - T I
: Audio Bluetooth Disk Mk8s :
I I
: Power Networking LXD Other.. :
© | I
P fee_ _____________ il L
wv
Bootloader, BSPs, configs Ubuntu root file system
(gadget snap) (base snap)
-
Ubuntu kernel
(kernel snap)
>

We recently helped package .NET for Jammy

.NET 6 is now in Ubuntu 22.04

Oh

Richard Lander

August 16th, 2022 | 145 | © 20

NET 6 is now included in Ubuntu 22.04 (Jammy) and can be installed with just apt install
dotnet6. This change is a major improvement and simplification for Ubuntu users. We're also

releasing .NET with Chiseled Ubuntu Containers, a new small and secure container offering from

Canonical. These improvements are the result of a new partnership between Canonical and Microsoft.

https://devblogs.microsoft.com/dotnet/dotnet-6-is-now-in-ubuntu-2204/

Chiselled Ubuntu container = almost Alpine tiny

First, the runtime—deps layer.

e Ubuntu 22.04 (Jammy): 112MB
e Chiseled Ubuntu 22.04 (Jammy): 12.9MB

And on the other end of the spectrum, the aspnet layer.

e Ubuntu 22.04 (Jammy): 213MB
e Chiseled Ubuntu 22.04 (Jammy): 104MB

It's reasonable to ask what Alpine looks like. It's a newer distro designed to be super small and
componentized from the start. Alpine is 9.84MB for runtime-deps:6.0—-alpine and 100MB for
aspnet:6.0-alpine.’

https://devblogs.microsoft.com/dotnet/dotnet-6-is-now-in-ubuntu-2204/

Swift.org distributes a tarball (@®) for Ub

Current status of Swift on Ubuntu

Swift.org distributed Swift on Ubuntu is great... as long as you are after a Docker image.
If you rely on the tarball though:

e Friction: fetch dependencies & untarball, set up $SPATH.
e No upgrade path, bug / security fixes, livepatch from Canonical.
e Setting up path dependent tools can get awkward.

Practical implication of the friction: developer experience is not attractive.
(compare to, say, Rust, Golang).

e Docker great for deploying cloud native, but not ideal for all kinds of local tools.
e Packaging with SPM / mint or homebrew similarly a high friction route.

Swiftlang.xyz by @futurejones

L ' Home | Swift Community X +

8 swiftlang.xyz

Support This Repository

curl -s https://archive.swiftlang.xyz/install.sh | sudo bash
Detected operating system as Ubuntu/focal.
Checking for curl...

Install Swift on

Running apt-get update... done.
Installing apt-transport-https... done.

. .
U bu ntu Deb ian Tnstalling [/ sV a/ant (acires TiatinfamisClmolrelsans Tiat
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 46 100 46]] 3 —t—t— et 2190
Importing swiftlang gpg key.
Running apt-get update... done.

The repository is setup!
You can now install swift using 'sudo apt install swiftlang'

:~$ swift —version

Swift version 5.6.3 (swift-5.6.3-RELEASE)
Target: x86_64~unknown-linux-gnu :E ' SWi ﬂ

User Guide

github.com/apple/swift-installer-scripts

© GitHub - apple/swifteinst.

o6 github.com

Sign up

e / swift-installer-scripts
19 Pullrequ
main ~ Go to file Code~ | About

compnerd Wind ove _InternalSwiftSyntaxParser fr... ‘= go 244

platiorm:
Icu
gitignore
DEOWNERS
CONTRIBUTIN
LICENSE.txt A g Releases
README.md E L ©5

README.md
m Packages

Swift Installer Scripts

This repository contains all the supporting files required for building toolchain Contributors 13
packages for the Swift toolchain for distribution.

epository does not contain the actual contents of the toolchain. These files are
to construct the packaged forms toolchain to layout the toolchain properly
on the destination system

Organization
Languages
cause the repository hos aging support content for multipl

all the platforms to colocate in the same repository without
CMake Cs+

Shell Dockerfile
Makefile Assembly
Other (

github.com/apple/swift-installer-scripts

Linux Packages (RPM/Deb)

Currently Swift on Linux is distributed via tarball and Docker, and we would like to start
supporting RPM and Debs officially on swift.org. The goal is to provide a seamless
install process for Swift on Linux by utilizing the platform’s native package manager
(RPM/Deb).

Step 1. Develop native packages / installers for the distributions

Step 2. Offer the native packages / installers through swift.org

Support all officially supported Linux platforms
Code signed by swift.org certificate
Repository hosted on swift.org

Step 3. Offer the native packages / installer through official repositories for the
various platforms

Work with official repositories to accept package specs

in!
Count me in! Deprecate swift.org packages / installer repository

Step 4. Deprecate swift.org Linux tarballs

Swift in universe would be Ubuntu Pro supported
(no need to get it to main)

Software & Updates

Ubuntu Software Other Software Updates Authentication Additional Drivers Developer Options Livepatch

Detach this machine Ubuntu Advantage subscription attached.

Livepatch helps keep your system secure by applying security updates that don't require a restart.

« Show Livepatch status in the top bar

23,000 more packages secured
Expanded coverage for over 10x more open-source packages, now
including the Ubuntu Universe repository (in beta)

Packaging Swift based software in debs still not the way to go for many

even if swiftlang were in universe.

Packaging your app to N distro specific Formats is no-one’s idea of fun
(which is why dev and distro packager traditionally have been different people):

e kernel, glibc, other key shared library dependency versions and fs paths.
e bad packages (or failed installs of good packages) can break a user system.

Your attention is naturally divided based on addressable audience.
Snap and Flatpak formats both tackle these problems (different tech, scope).

e Flatpak: desktop applications.

e Snap:
o desktop, CLI utilities, servers (whole distributed systems), embedded applications.
o systemd units (e.g. network-manager, snapd itself).
o whole system configuration (“gadget snaps”), kernel updates (“kernel snaps”).

Ubuntu Debs can be staged inside universal Snaps

‘stage’ inside /

(40+
| yourapp (snap) distributions

T

[swiftlang (deb) }

mz2 in in swiftlang-snap/plugin/vapor on [Zmain [!?]
[> vapor.toolbox new foo

Cloning template...

name: foo

Would you like to use Fluent? (--fluent/--no-fluent)
ly/n> y

fluent: Yes

db: Postgres (Recommended)

Would you like to use Leaf? (--leaf/--no-leaf)
[y/n> y

leaf: Yes

Generating project files

[+ Package.swift

main.swift

configure.swift

routes.swift

Todo.swift

CreateTodo.swift

.gitkeep

TodoController.swift

AppTests.swift

index.leaf

.gitkeep

Dockerfile

docker-compose.yml

.gitignore

+ .dockerignore

Creating git repository

Adding first commit

A FE R+

*ok
skok ook
*k ek
*k - Rt
*ok ~e <k
Kok v ~en “kk
ok~ e - ok
ok S . Rk
Yok Aahs e o e e e el
*ok . *ok
e o N L S S S P
*ok . R e)
Aok e N e RS
*okok e oo e KK
sokokok Rt & & T
ok ofokk e e ek KKK
sorfokRsRkF KA KK
NN AN 2SN =)
NSNS/ ==\ A NaANSZa 2N

a web framework for Swift

Project foo has been created!

Use cd 'foo' to enter the project directory

Then open your project, for example if using Xcode type open Package.swift or code

in swiftlang-snap/plugin/vapor on [Zmain [!?] took 8s

. if using VSCode

(base)

(base)

Status of my Swift packaging experiments

apt add-repository ppa:mz2/swiftlang
apt update
apt install swiftlang

Status of my Swift packaging experiments

[Swift.org
_ binary tarball

[swiftlang) iswiftlang mz2:swiftlang Sl (e)]< 40+
_ (“source” deb)) (binary deb) PPA 9 p\ distributions

snap install ./swiftlang.snap

Status of my Swift packaging experiments

[swiftlang (snap)]

T

Vs
(.
(

p
snapcraft

[swiftlang (deb)]é

based build
G

\

swiftlint (snap)

swiftformat (snap)

~

xcbeautify (snap)

~

[vapor toolbox

_(snap)

] ... with 40+

distributions
in mind!

What should be happening instead

(2\

github.com/apple/swift

- J

P
Patch Swift source
L (GitHub action)

swiftlang

[swiftlang 1 | binary deb(s Ubuntu swiftlang (shap)]< 40+

. source deb(s) universe distributions
(launchpad)

snap install ./swiftlang.snap

Linux Is easy to target via Snap Store

Featured

Target anything systemd + snapd enabled
(40+ distributions) across amd64, arm64, arm8f, risc-v, ...

Can be a good way to get discovered (getting featured).

Can’t brick someone’s system with your software:
immutable, transactional, rollbacks, sandboxed.

Install metrics per version & geography available.

Controlled risk grades for updates with “channels”
(stable / beta / ...) — automated updates can be stopped.

Easy to integrate to pre-existing CI/CD pipelines.

Free remote build environment for all the
micro-architectures (no cross-compiling flags to invent).

Architecture of a Snap

Read-only file

app-specific app-speciﬁc
\ writable area writable area
dpp shap

Enforced confinement ——

Signed and
authenticated
Regularly updated OTA

Architecture of a Snap

Distribution

channel Snap Store [
Manages .
dat Build and
conflijrfenieensé Snapd [shapcra ft] deploy tool

Your
application(s) Snap

Interfaces ~= “entitlements” in macOS sandbox terms

) snap interface audio-record
name: audio-record
chromium summary: allows audio recording via supporting services
discord plugs:
firefox - chromium
snapd - discord

- firefox

interface

Snap A Snap B
(consuIanes) (proviges) - mattermost-desktop
JI - rocketchat-desktop

- signal-desktop
- slack
- steam
- telegram-desktop
- vlc
slots:
- snapd

Interfaces ~= “entitlements” in macOS sandbox terms

e Exampleinterfaces:

o content interface
m access to mount locations from providers inside the consumer mount namespace
m =way to express a dependency between packages that snapd will resolve

o serial-portinterface
m Allow access to specific device nodes (/dev/ttyS*, /dev/ttyUSB*, /dev/ttyMX*..)
m Allow access to related char devices (c 4:%, ...)

o process control interface
m Allow access to /usr/bin/{p}kill
m Allow nice, setpriority, sched_set* syscalls

Interfaces are an abstraction to snapd managed, Linux kernel provided security systems.
e Interfaces are very granular, regularly added to and adjusted.
e Debugging mechanisms are provided for debugging denials.
e Implementation of individual interfaces are generally compact and readable.

Confinement (“sandboxing”)

Logical separation: a Snap is an immutable, self-contained, read-only mounted Filesystem.
Further isolation mechanisms rely on Linux kernel capabilities:
e Namespaces: processes in a snap see their own view of the system
(user, file, processes, network interface, hostname, ...).

e seccomp: system call filters (BPF) for the package’s processes.

e cgroups: limit access to system resources (like devices) that can be consumed (quotas):
CPU, memory, networking, access to various device categories.

e AppArmor: snapd managed Mandatory Access Control profiles
(at /var/lib/snapd/apparmor/profiles) which can be further extended by sys admin.

From CLI tools to a Kubernetes cluster

e Snaps can house systemd services, IMO the simplest way | have found to create one.

e Confinement modelis very flexible for many classes of applications. Examples:
o microk8s: a lightweight Kubernetes runnable on public clouds or edge.
o juju: cloud agnostic deploy and service lifecycle manager for distributed systems.
o MAAS: data centre management, provisioning system.
o steam: Steam together with (different degrees of bleeding) edge version of mesa.

e Hooks provided to respond to configuration changes (and install, refresh time).
o E.g.configuration changes made with snap config get / set
(akin to defaults get / set on macOS).
e Health checks can be created to confirm package is in workable state ->
rolled back to last working snapshot if not.

So let's make one!

snapcraft: build tool for Snap packages

e Reads package metadata, build steps from a snap/snapcraft.yaml

e Build donein anisolated environment, either using an LXD system container or
multipass (gemu).

e Remote building (on Launchpad.net) also available for amd64, armé4, RISC-V, ... :
snapcraft remote-build

e To distribute app, snapcraft authenticates you and uploads the package to Snap Store
(Store handles codesigning — no local dev code signing hell to be expected!)

> cat hello-world.swift

print("Hello world")

> swiftc hello-world

> hello-world
Hello world

> spapcraft init

4
— hello-world.swift
L— snap

L— spapcraft.yaml

name: hello-world
base: core22
version: "0.1"
summary: ..
description: ..

'stable' to release to candidate/stable
channels.
grade: stable

'devmode' during dev,

'strict' when you have it confined right,
'classic' when not confined.

confinement: strict

express a package repository dependency
to mz2/swiftlang PPA.
package-repositories:
- type: apt
ppa: mz2/swiftlang

parts:
hello-world:

plugin: dump

source: .

stage-packages:
- swiftlang

override-build: |
swiftc hello-world.swift
mkdir -p $SNAPCRAFT_PART_INSTALL/bin
mv hello-world $SNAPCRAFT_PART_INSTALL/bin/hello-world

apps:
hello-world:

command: bin/hello-world

> 1ldd /snap/hello-world/current/bin/hello-world

ldd /snap/hello-world/current/bin/hello-world
linux-vdso.so.1 (0x00007ffc09a8cOOO)
libswift_StringProcessing.so => not found
libswift_Concurrency.so => not found
libswiftCore.so => not found
libswiftSwiftOnoneSupport.so => not found
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6

(Ox00007f4f68a00OOO)

/1ib64/1d-linux-x86-64.s0.2 (0x00007f4f68d48000)

parts:
hello-world:

plugin: dump

source: .

build-packages:
- swiftlang
- chrpath

stage-packages:
- swiftlang

override-build: |
swiftc hello-world.swift
patchelf --set-rpath $SORIGIN/../lib/swiftlang/lib/swift/linux ./hello-world
mkdir -p $SNAPCRAFT_PART_INSTALL/bin
mv hello-world $SNAPCRAFT_PART_INSTALL/bin/hello-world

apps:
hello-world:
command: bin/hello-world

> snapcraft
> sudo snap install hello-world.snap

> hello-world
Hello world

So let's make another one!

SwiftFormat

parts:
swiftformat:

plugin: dump
source: https://github.com/nicklockwood/SwiftFormat.git
source-tag: 0.50.5
build-packages:

- patchelf
stage-packages:

- swiftlang
override-build: |

swift build -c release

BUILT_BIN="swift build -c release --show-bin-path’/swiftformat
patchelf --set-rpath /usr/lib/swiftlang/lib/swift/linux $BUILT_BIN

mkdir -p $SNAPCRAFT_PART_INSTALL/bin
install -v $BUILT_BIN $SNAPCRAFT_PART_INSTALL/bin

apps:
swiftformat:
command: bin/swiftformat
plugs:

- home

xcbeautify

parts:
swiftlint:

plugin: dump

source: https://github.com/tuist/xcbeautify.git

source-tag: 0.16.0

build-packages:
- swiftlang
- patchelf

stage-packages:
- swiftlang

override-build: |
make install
BUILT BIN="swift build $SSWIFT_FLAGS --show-bin-path’/xcbeautify
patchelf --set-rpath 'SORIGIN:$ORIGIN/../usr/lib' $BUILT_BIN
mkdir -p $SNAPCRAFT_PART_INSTALL/bin
install -v $BUILT_BIN $SNAPCRAFT_PART_INSTALL/bin

apps:
xcbeautify:
command: bin/xcbeautify
plugs:
- home

Vapor Toolbox

apps:
vapor:
command: bin/vapor
command-chain:
- bin/toolbox-launcher
plugs:
- home
- network
- network-bind

layout:

Jusr/lib/swiftlang:

symlink: $SNAP/usr/1lib/swiftlang
/etc/gitconfig:

bind-file: $SNAP_DATA/etc/gitconfig
Jusr/1lib/git-core:

symlink: $SNAP/usr/lib/git-core
Jusr/share/git-core/templates:

symlink: S$SNAP/usr/share/git-core/templates

Service (systemd unit)

Creating a service

https://snapcraft.io/docs/services-and-daemons

apps:
your-vapor-app:
command: bin/your-vapor-app
daemon: simple # simple | oneshot | forking | notify

restart-condition: always #on-failure|on-success]|..|never
stop-mode: sigterm # sigterm|sigterm-all|sighup]|..|sigint-all
20+ more options

https://snapcraft.io/docs/services-and-daemons

snapcraft is pluggable.
How about a Swift plugin?

Snapcraft is pluggable. How about a Swift plugin?

parts:
hello-world:
plugin: swift
source: .
swift-revision: 5.7.1-RELEASE
swift-product: hello-world

apps:
hello-world:
command: bin/hello-world

Snapcraft is pluggable. How about a Swift plugin?

parts:
hello-world:
plugin: swift
source:
swift-revision: 5.7.1-RELEASE
swift-product: swiftlint
swift-configuration: release
swift-flags: -Xswiftc -static-stdlib
Swift-include-path:
swift-linker: 11d
swift-1link:
- CFURLSessionInterface
- CFXMLInterface
- curl
- xml2
stage-packages:
- libxml2
- libcurl4
apps:
swiftlint:
command: bin/swiftlint

Halp! Can we work together on this?

e Repackaging Swift.org tarballs = a hack to let me explore the value of doing the rest.
o | got further, but got stuck being able to remove the hack.
o ... because Swift version, OS version, CPU architecture specific toolchain build errors
plausibly need more maintainer attention.

e Building “real” debs with Ubuntu blessed compiler flags included would be useful:
o Symbol stripping doesn’t work quite right for Debian build tool chain.
o A debugsymbol package would be lovely to include as well.
o Microarchitecture version used is occasionally changed, has performance effect.
o FS pathsinside the package are pretty awkward.

e Asingle package with a 480M kitchen sink inside it is not ideal.

o Compiler toolchain, headers, runtime libs all in one package.

o (A snapcraft plugin can deal with this by staging only specific paths.)
e How about some minimal, rootless Ubuntu Docker images, too?

Thank you. Questions?

Slides over at

(Also, we're hiring, lots!)

https://matiaspiipari.dev
https://fosstodon.org/@mz2

